Otx2-PNN Interaction to Regulate Cortical Plasticity
نویسندگان
چکیده
The ability of the environment to shape cortical function is at its highest during critical periods of postnatal development. In the visual cortex, critical period onset is triggered by the maturation of parvalbumin inhibitory interneurons, which gradually become surrounded by a specialized glycosaminoglycan-rich extracellular matrix: the perineuronal nets. Among the identified factors regulating cortical plasticity in the visual cortex, extracortical homeoprotein Otx2 is transferred specifically into parvalbumin interneurons and this transfer regulates both the onset and the closure of the critical period of plasticity for binocular vision. Here, we review the interaction between the complex sugars of the perineuronal nets and homeoprotein Otx2 and how this interaction regulates cortical plasticity during critical period and in adulthood.
منابع مشابه
Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity.
Brain plasticity is often restricted to critical periods in early life. Here, we show that a key regulator of this process in the visual cortex, Otx2 homeoprotein, is synthesized and secreted globally from the choroid plexus. Consequently, Otx2 is maintained in selected GABA cells unexpectedly throughout the mature forebrain. Genetic disruption of choroid-expressed Otx2 impacts these distant ci...
متن کاملThe Chemorepulsive Protein Semaphorin 3A and Perineuronal Net-Mediated Plasticity
During postnatal development, closure of critical periods coincides with the appearance of extracellular matrix structures, called perineuronal nets (PNN), around various neuronal populations throughout the brain. The absence or presence of PNN strongly correlates with neuronal plasticity. It is not clear how PNN regulate plasticity. The repulsive axon guidance proteins Semaphorin (Sema) 3A and...
متن کاملDevelopment and Structural Variety of the Chondroitin Sulfate Proteoglycans-Contained Extracellular Matrix in the Mouse Brain
Chondroitin sulfate proteoglycans (CSPGs) are major components of the extracellular matrix (ECM) in the brain. In adult mammals, CSPGs form the specialized ECM structure perineuronal nets (PNNs) that surround somata and dendrites of certain types of neurons. PNNs restrict synaptic plasticity and regulate the closure of critical periods. Although previous studies have examined the starting perio...
متن کاملA Mouse Model for Conditional Secretion of Specific Single-Chain Antibodies Provides Genetic Evidence for Regulation of Cortical Plasticity by a Non-cell Autonomous Homeoprotein Transcription Factor.
During postnatal life the cerebral cortex passes through critical periods of plasticity allowing its physiological adaptation to the environment. In the visual cortex, critical period onset and closure are influenced by the non-cell autonomous activity of the Otx2 homeoprotein transcription factor, which regulates the maturation of parvalbumin-expressing inhibitory interneurons (PV cells). In a...
متن کاملTrajectory of Parvalbumin Cell Impairment and Loss of Cortical Inhibition in Traumatic Brain Injury.
Many neuropsychiatric symptoms that follow traumatic brain injury (TBI), including mood disorders, sleep disturbance, chronic pain, and posttraumatic epilepsy (PTE) are attributable to compromised cortical inhibition. However, the temporal trajectory of cortical inhibition loss and its underlying mechanisms are not known. Using paired-pulse transcranial magnetic stimulation (ppTMS) and immunohi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016